This article originally appeared in Penn Engineering Today, written by Melissa Poppas.
Humans have never been more connected to one another, though the speed with which we can share with one another has its drawbacks. For example, the spread of COVID-19, as well as misinformation about it, have both been facilitated by our highly connected online and in-person networks. Fortunately, the branches of mathematics known as information theory and network theory can help us to understand how both systems work and how to control them.
NSF CAREER Award recipient Shirin Saeedi Bidokhti, Assistant Professor in Electrical and Systems Engineering, will use the grant to conduct research on both online social networks and COVID-19 contact tracing networks. As case studies, these real-word examples will inform networked systems’ theoretical foundations, as well as the design of learning and decision-making algorithms that help us to make sense of them. She will also use the funding to develop a new course module that brings information and network theory into practice for undergraduate students at Penn.
Using a combination of tools from information theory, network theory and machine learning, Saeedi Bidokhti aims to narrow the gap between theory and practice through algorithm-informed real-time data sampling, estimation and inference in networked systems. Her work aims to produce smarter algorithms that can extract information, infer about these systems, and ultimately provide more precise control of them.
While such algorithms are already improving our ability to understand complex networks, there is always a tradeoff that needs to be considered when it comes time to use that information.
“In information extraction, knowing when to sample with real-time data makes a difference, says Saeedi Bidokhti. “It helps us to know if we should act now or wait to sample, facing the tradeoff of gathering the most information while minimizing costs to most efficiently control the system.”
To read the full article, visit Penn Engineering Today.