Categories
Faculty Featured

Advancing Quantum Computing: NSF Career Award Fuels Innovative Research

Assistant Professor Gushu Li has been honored with the prestigious NSF Career Award, signaling a groundbreaking venture into the world of quantum computing. The central challenge Gushu is tackling revolves around creating programming systems that can support larger-scale quantum computers. Imagine our current systems as tailor-made for small prototypes, limiting the true potential of these advanced quantum machines.

The focus of Gushu Li’s research is on enhancing the way we write and execute programs for quantum computers. The obstacle lies in the fact that existing systems are like specialized tools for small tasks. They are not equipped to handle the complex demands of larger-scale quantum computers. To address this, Gushu is essentially upgrading the software that controls quantum computers, making it smarter and more adaptable.

The NSF Career Award doesn’t just fuel groundbreaking research but also enables Gushu Li to expand the team. New graduate students will be brought in to contribute to related projects and help build the proposed software improvements. Beyond the technical aspects, Gushu is also committed to sharing knowledge and raising awareness. The award will support the creation of two courses focused on quantum computing. They won’t just be for tech enthusiasts, but for anyone interested in understanding this cutting-edge technology.

Additionally, Gushu Li plans to be part of existing outreach programs. Introducing quantum computing concepts to students at various levels is important to expose young minds to all academic options. The interdisciplinary nature of this research, blending computer science, math, physics, and engineering, underscores its significance in advancing our understanding of how we can manipulate the very building blocks of the universe. Gushu and the team are on a path to making meaningful contributions, thanks to the support provided by the NSF Career Award.

To learn more about quantum computing, visit: Penn Center for Quantum Information, Engineering, Science and Technology (QUIEST)

Categories
Faculty

In the Spotlight: Mingmin Zhao and Building a Bridge Between Machine Learning and Monitoring Health

In the past year, the Department of Computer and Information Science has welcomed an unprecedented number of academic professionals to join Penn’s faculty. One of the Assistant Professor’s who has joined both CIS and ESE this past Fall is Mingmin Zhao, an MIT graduate with a PhD focusing on building wireless sensing systems with artificial intelligence.

The collaboration between CIS and a number of departments at Penn is what encouraged Zhao to further his research and teaching career here.

“Penn provides a fertile ground for interdisciplinary research not only within the CIS department but also with other departments, including ESE, medical school, nursing school, etc.” said Zhao, “I am very excited about collaborating with people at Penn and working on highly-impactful interdisciplinary research.”

Zhao’s research interests include building wireless sensing systems that can capture a human’s functionality through physical surfaces. He explains that his research “uses machine learning to interpret and analyze wireless reflections to detect humans through walls, track their movements, and recognize their actions, enabling a form of x-ray vision.”

“Through-Wall Human Pose Estimation Using Radio Signals”
Mingmin Zhao, Tianhong Li, Mohammad Abu Alsheikh, Yonglong Tian, Hang Zhao, Antonio Torralba, Dina Katabi,
Massachusetts Institute of Technology

With these wireless sensing systems, he has also developed a way for healthcare professionals to track a person’s functions including sleep, respiration, and heart rate. “These technologies allow us to continuously and without contact monitor people’s health without wearable sensors or physical contact with the user.” In the startup he joined after graduating, Zhao stated that they are building upon his own research to “work with pharmaceutical companies to run clinical trials in people’s homes.”

“Learning Sleep Stages from Radio Signals: A Conditional Adversarial Architecture”
Mingmin Zhao, Shichao Yue, Dina Katabi, Tommi Jaakkola, Matt Bianchi,
MIT & Massachusetts General Hospital

When asked about what made him passionate about the work that he does, Zhao explained that he is passionate about developing sensing tech that focuses on better understanding humans and their wellbeing.

“New sensing technologies (e.g., contactless monitoring of physiological signals) could help doctors understand various diseases and how patients are doing after taking medications,” said Zhao. “They could enable new digital health and precision medicine solutions that improve people’s life.”

Mingmin Zhao is currently teaching CIS 7000 focusing on wireless mobile sensing and building AIoT (Artificial-intelligence Internet of Things) systems. He is looking forward to educating his students to apply what they have learned in building “hardware-software systems” to solving practical problems that can impact the world.